$(\tan \theta_B)^2$ dependence of the reflectivity which holds for the kinematical limit is also satisfied in the range of the vibration amplitudes above the value u_0^* . This is in agreement with our theoretical prediction based on (18).

4. Concluding remarks

We have investigated the dependence on the neutron wavelength of the integrated reflectivity of perfect and nearly perfect vibrating crystals in symmetrical diffraction geometries, the vibration vector **u** being always parallel to the diffraction vector **h**. We have verified the predictions of the wave-optical theory developed for the Bragg case and which is valid for any value of the vibration amplitude, from the perfect crystal to the kinematical limit. In the Laue case, our measurements could be used to discuss the rather large range of validity of (18) which is a simple approximation for the reflectivity of a deformed crystal. The authors are grateful to Dr R. Michalec for kindly lending the quartz crystals and to Mr A. Dvorak for his help with the preparation of the manuscript.

References

- CHALUPA, B., MICHALEC, R. & GALOCIOVA, D. (1969). Nucl. Instrum. Methods, 67, 357-358.
- GUIGAY, J. P. (1986). Acta Cryst. A42, 481-483.
- KULDA, J. (1984). Acta Cryst. A40, 120-126.
- KULDA, J. & LUKÁŠ, P. (1989). Phys. Status Solidi B, 153, 435-442. KULDA, J., VRÁNA, M. & MIKULA, P. (1988). Physica (Utrecht),
- B151, 122-129.
 MICHALEC, R., CHALUPA, B., SEDLÁKOVÁ, L., MIKULA, P., PETRŽILKA, V. & ZELENKA, J. (1974). J. Appl. Cryst. 7, 588-592.
- MICHALEC, R., MIKULA, P., VRÁNA, M., KULDA, J., CHALUPA, B. & SEDLÁKOVÁ, L. (1988), Physica (Utrecht), B151, 113-121.
- MIKULA, P., MICHALEC, R., CHALUPA, B., SEDLÁKOVÁ, L. & PETRŽILKA, V. (1975). Acta Cryst. A31, 688-693.
- TAKAGI, S. (1962). Acta Cryst. 15, 1311-1312.
- TAKAGI, S. (1969). J. Phys. Soc. Jpn, 26, 1239-1253.
- TAUPIN, D. (1964). Bull. Soc. Fr. Minéral. Cristallogr. 87, 469-511.

Acta Cryst. (1990). A46, 826-831

Euklidische Normalisatoren für trikline und monokline Raumgruppen bei spezieller Metrik des Translationengitters

VON ELKE KOCH

Institut für Mineralogie der Universität Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Deutschland

und Ulrich Müller

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Deutschland

(eingegangen am 2 April 1990; angenommen am 20 Juni 1990)

Abstract

A listing of the Euclidean normalizers for triclinic and monoclinic space groups having translation lattices with specialized metric is given. These normalizers have not been included in previous tabulations. For convenience, in the case of monoclinic space groups, only the second setting (*c*-axis unique) is considered and the metric of the cells is restricted within certain limits which warrant that all specialized cases and all cell choices according to *International Tables for Crystallography* [(1987) Dordrecht: Kluwer] are included.

Die zunehmende Bedeutung des Konzepts der euklidischen und affinen Normalisatoren von Raumgruppen wird auch durch die Aufnahme entsprechender Tabellen in die neueste Auflage des Bandes A der International Tables for Crystallography verdeutlicht (Koch & Fischer, 1987). Ebenso wie in früheren Zusammenstellungen (Hirshfeld, 1968; Gubler, 1982a, b; Fischer & Koch, 1983) sind dort die euklidischen Normalisatoren aber nur für solche Raumgruppen aufgeführt, deren Translationengitter keine speziellen metrischen Eigenschaften haben. Entspricht bei einem bestimmten Raumgruppenexemplar die Gittermetrik aber einer höheren Kristallfamilie, d.h. gehört die Punktgruppe des Gitters zu einer anderen Familie als die Raumgruppe selbst, dann kann der zugehörige euklidische Normalisator ebenfalls eine höhere Symmetrie haben als es dem Normalfall für diesen Raumgruppentyp entspricht.

Der euklidische Normalisator einer jeden Raumgruppe ist eine Untergruppe ihres affinen Normalisators. Beide Normalisatoren sind für den allgemeinen Fall, d.h. bei nicht spezialisierter Metrik

© 1990 International Union of Crystallography

des Translationengitters, gemeinsam tabelliert (Gubler, 1982a; Koch & Fischer, 1987), und es ist in den meisten Fällen kein Problem, auch für eine Raumgruppe mit speziellen metrischen Eigenschaften den zugehörigen euklidischen Normalisator daraus abzuleiten. Für alle tetragonalen, trigonalen (und rhomboedrischen), hexagonalen und kubischen Raumgruppen sind die beiden Normalisatoren identisch, d.h. metrische Sonderfälle für den euklidischen Normalisator können nicht auftreten. Dagegen kann der wahre euklidische Normalisator einer orthorhombischen Raumgruppe infolge einer metrischen Spezialisierung tetragonal oder kubisch sein. während man in den Tabellen nur den orthorhombischen Allgemeinfall findet. Dann läßt sich der wahre Normalisator aber sehr leicht als Zwischengruppe zwischen dem affinen Normalisator und dem tabellierten euklidischen Normalisator ableiten. Ein entsprechendes Beispiel ist bei Koch & Fischer (1987) gegeben.

Auch für trikline und monokline Raumgruppen ist der euklidische Normalisator Untergruppe des affinen Normalisators. Aber anders als für die übrigen Kristallsysteme ist solch ein affiner Normalisator nicht zu irgendeiner Bewegungsgruppe isomorph und läßt sich daher auch nicht durch ein (eventuell modifiziertes) Hermann-Mauguin-Raumgruppensymbol charakterisieren. Infolgedessen ist die Bestimmung der metrischen Sonderfälle für die euklidischen Normalisatoren unübersichtlicher als im orthorhombischen System, und es erscheint zweckmäßig, solche metrischen Sonderfälle explizit aufzulisten.

In Tabelle 1 sind die metrischen Spezialfälle für die euklidischen Normalisatoren der monoklinen Raumgruppen zusammengefaßt. Außer orthorhombischen können sowohl tetragonale als auch hexagonale Bewegungsgruppen als Normalisatoren auftreten. Da die konventionelle kristallographische Beschreibung tetragonaler und hexagonaler Gruppen die c-Richtung auszeichnet, ist es zweckmäßig, sich bei den monoklinen Raumgruppen auf die sogenannte zweite Aufstellung zu beziehen, bei der die monokline Achse in c-Richtung verläuft. Unnötige Achsenvertauschungen wurden dadurch vermieden.

Die Symmetrie des euklidischen Normalisators einer monoklinen Raumgruppe hängt von nur zwei metrischen Parametern ab. Eine recht übersichtliche Darstellung aller metrischen Sonderfälle erreicht man, wenn man das Achsenverhältnis a/b und den Kosinus des monoklinen Winkels γ als Parameter verwendet. Will man für jeden Raumgruppentyp alle unterschiedlichen Fälle genau einmal erfassen, so darf man für die metrischen Parameter a/b und cos γ allerdings nicht alle Wertpaare zulassen, sondern man muß sich auf einen bestimmten Bereich beschränken, dessen Grenzen vom jeweiligen Raumgruppentyp abhängen. Für die erste Aufstellung der monoklinen Raumgruppen sind solche Bereiche von Parthé & Gelato (1985) dargestellt und ausführlich diskutiert worden; darauf basieren die in Fig. 1-4 abgesteckten Bereiche.

In Fig. 1 ist der geeignete Parameterbereich für die Raumgruppentypen P2, P2₁, Pm, P2/m und P2₁/m dargestellt. Jede Raumgruppe dieser Typen läßt sich eindeutig genau einem Punkt im Inneren oder auf dem Rand des dargestellten Bereichs zuordnen. Alle metrischen Sonderfälle für die Translationengitter entsprechen den drei Randgeraden oder ihren Schnittpunkten und sind mit einer speziellen Symmetrie des euklidischen Normalisators verknüpft. Für $\cos \gamma = 0$ entartet das Translationengitter der Raumgruppe zu einem orthorhombischen P-Gitter, und der euklidische Normalisator wird *Pmmm*. Für a/b = 1und für $a/b = -2 \cos \gamma$ ergibt sich dagegen ein orthorhombisches C-Gitter als Translationengitter, und der euklidische Normalisator ist in beiden Fällen Cmmm. Die zugehörigen Ränder (in Fig. 1 gestrichelt) unterscheiden sich im Gitterwinkel für die primitive Zelle mit rhombenförmiger Basisfläche, die man für jedes oC-Gitter wählen kann; für a/b = 1 liegt er zwischen 90 und 120°, während er für $a/b = -2 \cos \gamma$ größer als 120° ist. Für $\gamma = 90^\circ$ und a = b erhält man ein tetragonales P-Gitter und einen tetragonalen euklidischen Normalisator, während sich für $\gamma = 120^{\circ}$ und a = b ein hexagonales *P*-Gitter und ein hexagonaler euklidischer Normalisator ergeben.

Für jede der restlichen monoklinen Raumgruppentypen gibt es trotz Beibehaltung der zweiten Aufstellung drei gleichberechtige, unterschiedliche Möglichkeiten für die Zellenwahl (cell choice 1, 2, 3), die auch in den International Tables for Crystallography gelistet sind und die sich durch ihre Symbole unterscheiden lassen (z.B. A112/m, B112/m und I112/m). Als Folge davon gibt es zwei unterschiedliche Wege, um den Parameterbereich für diese Raumgruppen-

Fig. 1. Parameterfeld für alle unterschiedlichen Raumgruppen der Typen P2, P2₁, Pm, P2/m und P2₁/m.

EUKLIDISCHE NORMALISATOREN

Tabelle 1. Euklidische Normalisatoren für monokline Raumgruppen

Nr	Raumgruppe	Euklidischer Normalisator					
	ich comöß Fig 1:	$\begin{bmatrix} manabling & a < b \\ a = b \\ a < b \\ a = b $					a - b
Bereich gemaß Fig.1:		Matrik	$\alpha = 00^{\circ}$	$\begin{array}{c} a = b \\ 00^{\circ} < \alpha < 120^{\circ} \\ 2\cos \alpha = -\alpha/b \end{array}$		~ - 90°	x = 0
$-2\cos\gamma \le a/b \le 1$		MELTIN	$Metrik \qquad \gamma = 90 \qquad 90 < \gamma < 120$		$2\cos y = -u/0$ $y = 30$ $y = 120$		
$90^{\circ} \leq \gamma \leq 120^{\circ}$		$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} - \mathbf{b})$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}\mathbf{a} + \mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$
_		$c_E = \varepsilon c$	$c_E = \varepsilon c$	$c_E = \varepsilon c$	$c_E = \varepsilon c$	$\mathbf{c}_E = \varepsilon \mathbf{c}$	$c_E = \varepsilon c$
3	P112	$P^{1}112/m$	P^1mmm	C^1mmm	C^1mmm	$P^{1}4/mmm$	$P^{1}6/mmm$
4	P112 ₁	$P^{1}112/m$	P^1mmm	C^1mmm	C^1mmm	$P^{1}4/mmm$	$P^{1}6/mmm$
		$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1(\mathbf{a} - \mathbf{b})$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon \mathbf{a}$	$a_E = \varepsilon a$
		$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \varepsilon_2(\frac{1}{2}\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \varepsilon \mathbf{b}$	$\mathbf{b}_E = \varepsilon \mathbf{b}$
		$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$c_E = \frac{1}{2}c$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$c_E = \frac{1}{2}c$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$
6	P11m	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	P^24/mmm	$P^{2}6/mmm$
·	<u> </u>	$a_E = \frac{1}{2}a$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} - \mathbf{b})$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$a_E = \frac{1}{2}a$
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}\mathbf{a} + \mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$
		$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$
10	P112/m	P112/m	Pmmm	Cmmm	Cmmm	P4/mmm	P6/mmm
11	$P112_{1}/m$	P112/m	Pmmm	Cmmm	Cmmm	P4/mmm	P6/mmm
L	1	I	/ ₁₀	·		<u>.</u>	· · · · · ·
Bere	ich gemäß Fig.2:	monokline	a < b	a = b	a < b **	a = b]
	$a \propto a/b < 1$	Metrik	$\gamma = 90^{\circ}$	$90^{\circ} < \gamma < 180^{\circ}$	$\cos \gamma = -a/b$	$\gamma = 90^{\circ}$	
900	$< \gamma < 180^{\circ}$		·····		,,	1	ן ר
	27 100	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} - \mathbf{b})$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	
_		$c_E = \varepsilon c$	$c_E = \varepsilon c$	$c_E = \varepsilon c$	$c_E = \varepsilon c$	$c_E = \varepsilon c$	1
5	<i>I</i> 112	$P^{1}112/m$	P^1mmm	C^1mmm	P^1mmm	$P^{1}4/mmm$	
		$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1(\mathbf{a} - \mathbf{b})$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon \mathbf{a}$]
		$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \varepsilon_2(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \varepsilon \mathbf{b}$	
		$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	
7	P11n	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	$P^{2}4/mmm$]
8	Illm	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	$P^{2}4/mmm$	-
9	I11b (I11a)	$P^{2}112/m$	P^2mmm	P ² ccm	P^2mmm	$P^{2}4_{2}/mmc$	
·		$a_E = \frac{1}{2}a$	$a_E = \frac{1}{2}a$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} - \mathbf{b})$	$a_E = \frac{1}{2}a$	$a_E = \frac{1}{2}a$	1
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$b_E = \frac{1}{2}b$	$b_E = \frac{1}{2}(a+b)$	$b_E = \frac{1}{2}(a+b)$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	
		$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	
12	I112/m	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	1
13	P112/n	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	1
14	$P112_1/n$	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	1
15	$I_{112/b} (I_{112/a})$	P112/m	Pmmm	Cccm	Pmmm	$P4_2/mmc$	1
• in	• inclusive $\gamma = 120^{\circ}$ •• inclusive $b = a\sqrt{2}, \gamma = 135^{\circ}$						

 \mathbf{a}_E , \mathbf{b}_E , \mathbf{c}_E : Basisvektoren des euklidischen Normalisators.

typen so festzulegen, daß alle unterschiedlichen Fälle

genau einmal erfaßt werden.

(1) Man beschränkt sich für einen bestimmten Raumgruppentyp willkürlich auf eine der drei Möglichkeiten für die Zellenwahl. Ein entsprechender Parameterbereich ist in Fig. 2 für die Zellenwahl 2 bei P11n, P112/n und P112₁/n bzw. für die Zellenwahl 3 bei I112, I11m, I11b (I11a), I112/m und I112/b (I112/a) dargestellt. Entsprechendes gilt für Fig. 3 und P11a, P112/a und P112₁/a (Zellenwahl 1) bzw. B112, B11m, B11n (B11b), B112/m und B112/n (B112/b) (Zellenwahl 2) und für Fig. 4 und

ELKE KOCH UND ULRICH MÜLLER

Nr Raumgruppe		Euklidischer Normalisator					
Bereich gemäß Fig.3: $-2\cos\gamma \le a/b \le -1/\cos\gamma$		monokline Metrik	$\gamma = 90^{\circ \dagger}$	$2\cos\gamma = -a/b^{\ddagger}$ 90° < γ < 135°	$\cos \gamma = -b/a$ 90° < γ < 135°	$a = b\sqrt{2}$ $\gamma = 135^{\circ}$	
$90^{\circ} \leq \gamma \leq 135^{\circ}$		$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{a}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$ $\mathbf{c}_E = \varepsilon \mathbf{c}$	$b_E = \frac{1}{2}b$ $c_E = \varepsilon c$	$b_E = \frac{1}{2}a + b$ $c_E = \varepsilon c$	$b_E = \frac{1}{2}b$ $c_E = \varepsilon c$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$ $\mathbf{c}_E = \varepsilon \mathbf{c}$	
5	B112	$P^{1}112/m$	P^1mmm	C^1mmm	P^1mmm	$P^{1}4/mmm$	
		$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$ $\mathbf{b}_E = \varepsilon_2 \mathbf{b}$ $\mathbf{c}_E = \frac{1}{2} \mathbf{c}$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$ $\mathbf{b}_E = \varepsilon_2 \mathbf{b}$ $\mathbf{c}_E = \frac{1}{2} \mathbf{c}$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$ $\mathbf{b}_E = \varepsilon_2(\frac{1}{2}\mathbf{a} + \mathbf{b})$ $\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$a_E = \varepsilon_1(a+b)$ $b_E = \varepsilon_2 b$ $c_E = \frac{1}{2}c$	$\mathbf{a}_E = \varepsilon (\mathbf{a} + \mathbf{b})$ $\mathbf{b}_E = \varepsilon \mathbf{b}$ $\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	
7	P11a	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	P^24/mmm	
8	B11m	$P^{2}112/m$	P^2mmm	P ² mmm	P ² mmm	P^24/mmm	
9	B11n (B11b)	$P^{2}112/m$	P^2mmm	P ² ccm	P^2mmm	P^24_2/mmc	
		$a_E = \frac{1}{2}a$ $b_E = \frac{1}{2}b$ $c_E = \frac{1}{2}c$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$ $\mathbf{b}_E = \frac{1}{2}\mathbf{b}$ $\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$a_E = \frac{1}{2}a$ $b_E = \frac{1}{2}a + b$ $c_E = \frac{1}{2}c$	$a_E = \frac{1}{2}(a+b)$ $b_E = \frac{1}{2}b$ $c_E = \frac{1}{2}c$	$a_E = \frac{1}{2}(a+b)$ $b_E = \frac{1}{2}b$ $c_E = \frac{1}{2}c$	
12	B112/m	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
13	P112/a	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
14	$P112_{1}/a$	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
15	B112/n (B112/b)	P112/m	Pmmm	Cccm	Pmmm	$P4_2/mmc$	

Tabelle 1 (Fortsetzung)

[†] inklusive a = b [‡] inklusive $a = b, \gamma = 120^{\circ}$

Bereich gemäß Fig.4:		monokline		$2\cos\gamma = -b/a^{\ddagger}$	$\cos \gamma = -a/b$	$b = a\sqrt{2}$	
$-\cos\gamma \le a/b \le -1/(2\cos\gamma)$		Metrik	$\gamma = 90^{\circ \dagger}$	$90^{\circ} < \gamma < 135^{\circ}$	$90^{\circ} < \gamma < 135^{\circ}$	$\gamma = 135^{\circ}$	
90°	$\leq \gamma \leq 135^{\circ}$						
L		$a_E = \frac{1}{2}a$	$a_E = \frac{1}{2}a$	$a_E = a + \frac{1}{2}b$	$a_E = \frac{1}{2}a$	$a_E = \frac{1}{2}a$	
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	
		$\mathbf{c}_E = \varepsilon \mathbf{c}$	$c_E = \varepsilon c$	$\mathbf{c}_E = \varepsilon \mathbf{c}$	$c_E = \varepsilon c$	$\mathbf{c}_E = \varepsilon \mathbf{c}$	
5	A112	$P^{1}112/m$	P^1mmm	C^1mmm	P^1mmm	$P^{1}4/mmm$	
		$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon_1(\mathbf{a} + \frac{1}{2}\mathbf{b})$	$\mathbf{a}_E = \varepsilon_1 \mathbf{a}$	$\mathbf{a}_E = \varepsilon \mathbf{a}$	
		$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2 \mathbf{b}$	$\mathbf{b}_E = \varepsilon_2(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \varepsilon(\mathbf{a} + \mathbf{b})$	
		$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	
7	P11b	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	P^24/mmm	
8	Allm	$P^{2}112/m$	P^2mmm	P^2mmm	P^2mmm	P^24/mmm	
9	Alla	$P^{2}112/m$	P ² mmm	P ² ccm	P^2mmm	P^24_2/mmc	
		$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \frac{1}{2}\mathbf{a}$	$\mathbf{a}_E = \mathbf{a} + \frac{1}{2}\mathbf{b}$	$a_E = \frac{1}{2}a$	$a_E = \frac{1}{2}a$	
		$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}\mathbf{b}$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	$\mathbf{b}_E = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	
		$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	$\mathbf{c}_E = \frac{1}{2}\mathbf{c}$	$c_E = \frac{1}{2}c$	$c_E = \frac{1}{2}c$	
12	A112/m	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
13	P112/b	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
14	P1121/b	P112/m	Pmmm	Cmmm	Pmmm	P4/mmm	
15	A112/a	P112/m	Pmmm	Cccm	Pmmm	$P4_2/mmc$	

[†] inklusive a = b [‡] inklusive $a = b, \gamma = 120^{\circ}$

٠

A112, A11*m*, A11*a*, A112/*m* und A112/*a* (Zellenwahl 1) bzw. P11b, P112/b und P112₁/b (Zellenwahl 3).

Im Gegensatz zu den weiter oben im Zusammenhang mit Fig. 1 diskutierten Fällen führt bei den

Fig. 2. Parameterfeld für alle unterschiedlichen Raumgruppen der Typen P11n, P112/n, P112₁/n, I112, I11m, I11b (I11a), I112/m und I112/b (I112/a) bezogen auf die jeweils angegebene Zellenwahl.

genannten Raumgruppentypen nicht jede metrische Spezialisierung des Translationengitters auch zu einer Symmetrieerhöhung des euklidischen Normalisators. Die metrischen Sonderfälle ohne Erhöhung der Normalisatorsymmetrie entsprechen den beiden dünnen Linien, mit denen in den Fig. 2-4 die Parameterfelder jeweils unterteilt sind. Es gehören also hier alle Punkte im Inneren der dargestellten Gebiete zu Raumgruppen mit monoklinen euklidischen Normalisatoren. Die drei Randlinien beschreiben dagegen drei unterschiedliche Sonderfälle mit orthorhombischer Metrik und orthorhombischen euklidischen Normalisatoren. Durch die Art der Linien und durch die Schraffur ist deutlich gemacht, wie sich die Linien und Teilgebiete in den Fig. 2-4 jeweils entsprechen. Hexagonale Gittermetrik liegt nicht für Eckpunkte der Parameterbereiche vor, sondern für nicht weiter ausgezeichnete spezielle Punkte auf den Rändern ($\gamma = 120^\circ$, a = b). Infolgedessen sind die zugehörigen euklidischen Normalisatoren auch nicht hexagonal sondern nur orthorhombisch. Für die Raumgruppen mit tetragonaler Gittermetrik sind die euklidischen Normalisatoren zur einen Hälfte ebenfalls nur orthorhombisch (Fig. 2: $-\cos \gamma = a/b =$ $2^{1/2}/2$; Fig. 3, 4: $\gamma = 90^{\circ}$, a = b, zur anderen Hälfte sind sie dagegen tetragonal (Fig. 2: $\gamma = 90^{\circ}$, a = b;

Fig. 3. Parameterfeld für alle unterschiedlichen Raumgruppen der Typen P11a, P112/a, P112₁/a, B112, B11m, B11n (B11b), B112/m und B112/n (B112/b) bezogen auf die jeweils angegebene Zellenwahl.

Fig. 4. Parameterfeld für alle unterschiedlichen Raumgruppen der Typen P11b, P112/b, P112₁/b, A112, A11m, A11a, A112/m und A112/a bezogen auf die jeweils angegebene Zellenwahl.

Fig. 3: $-\cos \gamma = 2^{1/2}/2$, $a/b = 2^{1/2}$; Fig. 4: $-\cos \gamma = a/b = 2^{1/2}/2$).

(2) Man betrachtet nur den in Fig. 1 dargestellten Parameterbereich, bezieht dann aber für jeden Raumgruppentyp alle drei Möglichkeiten der Zellenwahl (cell choice 1, 2, 3) in die Überlegungen ein. Man darf sich also z.B. nicht auf A11m beschränken, sondern man muß innerhalb des kleinen Parameterbereiches auch B11m und I11m betrachten, wenn man tatsächlich alle Raumgruppen dieses Typs erfassen will. Allerdings entsprechen dann nicht alle Ränder dieser kleineren Gebiete verschiedenen metrischen Sonderfällen (vergl. Fig. 2-4).

In Tabelle 1 sind die euklidischen Normalisatoren für alle monoklinen Raumgruppen zusammengefaßt, gegebenenfalls für alle drei Möglichkeiten der Zellenwahl. Dabei ist auf die in den Fig. 1-4 dargestellten Parameterbereiche Bezug genommen. Die euklidischen Normalisatoren sind jeweils durch ein (modifiziertes) Hermann-Mauguin-Raumgruppensymbol charakterisiert. Die Beziehungen zwischen den Basisvektoren der Raumgruppe a, b, c und den Basisvektoren des euklidischen Normalisators \mathbf{a}_{E} , \mathbf{b}_{E} , \mathbf{c}_E sind ebenfalls angegeben. Für die Kristallklassen 2 und *m* enthalten die Normalisatoren kontinuierliche Translationen in einer oder in zwei Gitterrichtungen. Solche Normalisatoren sind durch Symbole gekennzeichnet, die anstelle des Bravais-Buchstaben die Symbole P^1 , C^1 bzw. P^2 enthalten (vergl. auch Z^1 , Z^2 bei Hirshfeld, 1968). Die infinitesimale Länge der entsprechenden Basisvektoren wird durch den Faktor ε ausgedrückt.

Für die triklinen Raumgruppen sind sämtliche metrischen Sonderfälle mit einer Symmetrieerhöhung des euklidischen Normalisators verknüpft. Abweichend zu der Darstellung für die monoklinen Gruppen sind in Tabelle 2 die metrischen Spezialfälle für P1 und PĪ durch die Angabe des entsprechenden Bravaistyps gekennzeichnet. Für PĪ ist der euklidische Normalisator immer die Eigensymmetriegruppe eines passend gewählten Punktgitters. Dabei gilt für die Basisvektoren $\mathbf{a}_E = \frac{1}{2}\mathbf{a}, \mathbf{b}_E = \frac{1}{2}\mathbf{b}$ und $\mathbf{c}_E = \frac{1}{2}\mathbf{c}$, wobei sich \mathbf{a}, \mathbf{b} und \mathbf{c} nicht auf die primitive Elementarzelle von PĪ, sondern auf die gegebenenfalls zentrierte Zelle für den entsprechenden metrischen Spezialfall beziehen.

Für P1 enthalten die euklidischen Normalisatoren immer kontinuierliche Translationen in drei unab-

Tabelle 2. Euklidische Normalisatoren für trikline Raumgruppen

Basisvektoren des euklidischen Normalisators:

P1: $\mathbf{a}_E = \varepsilon \mathbf{a}, \mathbf{b}_E = \varepsilon \mathbf{b}, \mathbf{c}_E = \varepsilon \mathbf{c};$ P1: $\mathbf{a}_E = \frac{1}{2}\mathbf{a}, \mathbf{b}_E = \frac{1}{2}\mathbf{b}, \mathbf{c}_E = \frac{1}{2}\mathbf{c}.$

	Raumgruppe			
Bravais-	<i>P</i> 1	<u>P</u> Ī		
Тур	Euklidischer Normalisate			
aP	$P^{3}\overline{1}$	PĪ		
mP	$P^{3}2/m$	P2/m		
mA	$P^{3}2/m$	A2/m		
oP	P ³ mmm	Pmmm		
oC	P ³ mmm	Cmmm		
oF	P ³ mmm	Fmmm		
οI	P ³ mmm	Immm		
tP	$P^{3}4/mmm$	P4/mmm		
tI	$P^{3}4/mmm$	I4/mmm		
hP	$P^{3}6/mmm$	P6/mmm		
hR	$P^3\bar{3}m1$	$R\bar{3}m$		
cP	$P^3m\bar{3}m$	$Pm\bar{3}m$		
cF	$P^3m\bar{3}m$	$Fm\bar{3}m$		
cI	$P^3m\bar{3}m$	Im3m		

hängigen Raumrichtungen, welche durch P^3 symbolisiert werden sollen. Man kann diese Normalisatoren daher leicht von denen für $P\bar{1}$ ableiten, indem man den Bravais-Buchstaben im Symbol durch P^3 ersetzt.

Herrn Professor W. Fischer danken wir für wertvolle Anregungen.

Literatur

- FISCHER, W. & KOCH, E. (1983). Acta Cryst. A39, 907-915. GUBLER, M. (1982a). Über die Symmetrie der Symmetriegruppen: Automorphismengruppen, Normalisatorgruppen und charakteristische Untergruppen von Symmetriegruppen, insbesondere der kristallographischen Punkt- und Raumgruppen. Diss., Univ. Zürich, Schweiz.
- GUBLER, M. (1982b). Z. Kristallogr. 158, 1-26.
- HIRSHFELD, F. L. (1968). Acta Cryst. A24, 301-311.
- KOCH, E. & FISCHER, W. (1987). *International Tables for Crystallography*, Bd. A, 2. gerevidieren Auflage, Teil 15. Dordrecht: Kluwer.
- PARTHÉ, E. & GELATO, L. M. (1985). Acta Cryst. A41, 142-151.